close

資料參考:https://alysivji.github.io/reactive-dashboards-with-dash.html (frameware,good)
Big Data Analytics with Pandas and SQLite in Python
https://datacarpentry.org/python-ecology-lesson/09-working-with-sql/index.html

https://sqlitebrowser.org/
https://medium.com/a-r-g-o/using-plotlys-dash-to-deliver-public-sector-decision-support-dashboards-ac863fa829fb (another porject)

 

Dash Application Design: MVC Pattern

Every Dash application could be divided into the following components:
(1)Data Manipulation - Perform operations to read / transform data for display
(2)Dashboard Layout - Visually render data into output representation
(3)Interaction Between Components - Convert user input to commands for data manipulation + render
When designing a Dash application, we should stucture our code into three sections:

1. Data Manipulation (Model)
2. Dashboard Layout (View)
3. Interaction Between Components (Controller)


We created the following template to help us get started:
 

Historical Match-up Dashboard

In this section, we will create a full-featured Dash application that can be used to view historical soccer data.

We will use the following process to create / modify Dash applications:

  1. Create/Update Layout - Figure out where components will be placed
  2. Map Interactions with Other Components - Specify interaction in callback decorators
  3. Wire in Data Model - Data manipulation to link interaction and render

Data is stored in an SQLite database:

Download the Dash application template file from above:

$ export DB_URI=sqlite:///soccer-stats.db
$ python app.py
* Running on http://0.0.0.0:8050/ (Press CTRL+C to quit)
* Restarting with stat

 


 

 

 

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 stanley 的頭像
    stanley

    史坦利Stanley程式Maker的部落格

    stanley 發表在 痞客邦 留言(0) 人氣()